Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Curr Opin Virol ; 59: 101304, 2023 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2269888

RESUMEN

Acute hyperinflammatory virus infections, such as influenza or coronavirus disease-19, are still a major health burden worldwide. In these diseases, a massive overproduction of pro-inflammatory cytokines and chemokines (cytokine storm syndrome) determine the severity of the disease, especially in late stages. Direct-acting antivirals against these pathogens have to be administered very early after infection to be effective and may induce viral resistance. Here, we summarize data on a host-targeted strategy using inhibitors of the cellular Raf/MEK/ERK kinase cascade that not only block replication of different RNA viruses but also suppress the hyperinflammatory cytokine response upon infection. In the first phase-II clinical trial of that approach, the MEK inhibitor Zapnometinib shows evidence of clinical benefit.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Gripe Humana , Humanos , Antivirales/uso terapéutico , Gripe Humana/tratamiento farmacológico , Citocinas , Quinasas de Proteína Quinasa Activadas por Mitógenos/uso terapéutico
2.
PLoS Pathog ; 18(1): e1010219, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2197167

RESUMEN

Excessive inflammation is a major cause of morbidity and mortality in many viral infections including influenza. Therefore, there is a need for therapeutic interventions that dampen and redirect inflammatory responses and, ideally, exert antiviral effects. Itaconate is an immunomodulatory metabolite which also reprograms cell metabolism and inflammatory responses when applied exogenously. We evaluated effects of endogenous itaconate and exogenous application of itaconate and its variants dimethyl- and 4-octyl-itaconate (DI, 4OI) on host responses to influenza A virus (IAV). Infection induced expression of ACOD1, the enzyme catalyzing itaconate synthesis, in monocytes and macrophages, which correlated with viral replication and was abrogated by DI and 4OI treatment. In IAV-infected mice, pulmonary inflammation and weight loss were greater in Acod1-/- than in wild-type mice, and DI treatment reduced pulmonary inflammation and mortality. The compounds reversed infection-triggered interferon responses and modulated inflammation in human cells supporting non-productive and productive infection, in peripheral blood mononuclear cells, and in human lung tissue. All three itaconates reduced ROS levels and STAT1 phosphorylation, whereas AKT phosphorylation was reduced by 4OI and DI but increased by itaconate. Single-cell RNA sequencing identified monocytes as the main target of infection and the exclusive source of ACOD1 mRNA in peripheral blood. DI treatment silenced IFN-responses predominantly in monocytes, but also in lymphocytes and natural killer cells. Ectopic synthesis of itaconate in A549 cells, which do not physiologically express ACOD1, reduced infection-driven inflammation, and DI reduced IAV- and IFNγ-induced CXCL10 expression in murine macrophages independent of the presence of endogenous ACOD1. The compounds differed greatly in their effects on cellular gene homeostasis and released cytokines/chemokines, but all three markedly reduced release of the pro-inflammatory chemokines CXCL10 (IP-10) and CCL2 (MCP-1). Viral replication did not increase under treatment despite the dramatically repressed IFN responses. In fact, 4OI strongly inhibited viral transcription in peripheral blood mononuclear cells, and the compounds reduced viral titers (4OI>Ita>DI) in A549 cells whereas viral transcription was unaffected. Taken together, these results reveal itaconates as immunomodulatory and antiviral interventions for influenza virus infection.


Asunto(s)
Virus de la Influenza A/inmunología , Macrófagos/inmunología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Succinatos/farmacología , Células A549 , Animales , Carboxiliasas/deficiencia , Carboxiliasas/inmunología , Citocinas/genética , Citocinas/inmunología , Humanos , Macrófagos/virología , Ratones , Ratones Noqueados , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/inmunología , Células THP-1
3.
Microorganisms ; 10(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: covidwho-2090284

RESUMEN

SARS-CoV-2 variants of concern (VOCs) represent an alarming threat as they show altered biological behavior and may escape vaccination effectiveness. Broad-spectrum antivirals could play an important role to control infections. The activity of Echinacea purpurea (Echinaforce® extract, EF) against (i) VOCs B1.1.7 (alpha), B.1.351.1 (beta), P.1 (gamma), B1.617.2 (delta), AV.1 (Scottish), B1.525 (eta), and B.1.1.529.BA1 (omicron); (ii) SARS-CoV-2 spike (S) protein-pseudotyped viral particles and reference strain OC43 as well as (iii) wild type SARS-CoV-2 (Hu-1) was analyzed. Molecular dynamics (MD) were applied to study the interaction of Echinacea's phytochemical markers with known pharmacological viral and host cell targets. EF extract broadly inhibited the propagation of all investigated SARS-CoV-2 VOCs as well as the entry of SARS-CoV-2 pseudoparticles at EC50's ranging from 3.62 to 12.03 µg/mL. The preventive addition of 25 µg/mL EF to epithelial cells significantly reduced sequential infection with SARS-CoV-2 (Hu-1) and OC43. MD analyses showed constant binding affinities to VOC-typical S protein variants for alkylamides, caftaric acid, and feruloyl-tartaric acid in EF extract and interactions with serine protease TMPRSS-2. EF extract demonstrated stable virucidal activity across seven tested VOCs, likely due to the constant affinity of the contained phytochemical substances to all spike variants. A possible interaction of EF with TMPRSS-2 partially would explain the cell protective benefits of the extract by the inhibition of membrane fusion and cell entry. EF may therefore offer a supportive addition to vaccination endeavors in the control of existing and future SARS-CoV-2 virus mutations.

4.
Viruses ; 14(3)2022 03 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1732235

RESUMEN

Rocaglates are potent broad-spectrum antiviral compounds with a promising safety profile. They inhibit viral protein synthesis for different RNA viruses by clamping the 5'-UTRs of mRNAs onto the surface of the RNA helicase eIF4A. Apart from the natural rocaglate silvestrol, synthetic rocaglates like zotatifin or CR-1-31-B have been developed. Here, we compared the effects of rocaglates on viral 5'-UTR-mediated reporter gene expression and binding to an eIF4A-polypurine complex. Furthermore, we analyzed the cytotoxicity of rocaglates on several human immune cells and compared their antiviral activities in coronavirus-infected cells. Finally, the potential for developing viral resistance was evaluated by passaging human coronavirus 229E (HCoV-229E) in the presence of increasing concentrations of rocaglates in MRC-5 cells. Importantly, no decrease in rocaglate-sensitivity was observed, suggesting that virus escape mutants are unlikely to emerge if the host factor eIF4A is targeted. In summary, all three rocaglates are promising antivirals with differences in cytotoxicity against human immune cells, RNA-clamping efficiency, and antiviral activity. In detail, zotatifin showed reduced RNA-clamping efficiency and antiviral activity compared to silvestrol and CR-1-31-B, but was less cytotoxic for immune cells. Our results underline the potential of rocaglates as broad-spectrum antivirals with no indications for the emergence of escape mutations in HCoV-229E.


Asunto(s)
Antineoplásicos , Coronavirus , Regiones no Traducidas 5' , Antineoplásicos/farmacología , Antivirales/farmacología , Constricción , Humanos
5.
Antiviral Res ; 186: 105012, 2021 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1064809

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, a severe respiratory disease with varying clinical presentations and outcomes, and responsible for a major pandemic that started in early 2020. With no vaccines or effective antiviral treatments available, the quest for novel therapeutic solutions remains an urgent priority. Rocaglates, a class of plant-derived cyclopenta[b]benzofurans, exhibit broad-spectrum antiviral activity against multiple RNA viruses including coronaviruses. Specifically, rocaglates inhibit eukaryotic initiation factor 4A (eIF4A)-dependent mRNA translation initiation, resulting in strongly reduced viral RNA translation. Here, we assessed the antiviral activity of the synthetic rocaglate CR-31-B (-) against SARS-CoV-2 using both in vitro and ex vivo cell culture models. In Vero E6 cells, CR-31-B (-) inhibited SARS-CoV-2 replication with an EC50 of ~1.8 nM. In primary human airway epithelial cells, CR-31-B (-) reduced viral titers to undetectable levels at a concentration of 100 nM. Reduced virus reproduction was accompanied by substantially reduced viral protein accumulation and replication/transcription complex formation. The data reveal a potent anti-SARS-CoV-2 activity by CR-31-B (-), corroborating previous results obtained for other coronaviruses and supporting the idea that rocaglates may be used in first-line antiviral intervention strategies against novel and emerging RNA virus outbreaks.


Asunto(s)
Antivirales/farmacología , Benzofuranos/farmacología , Ácidos Hidroxámicos/farmacología , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Antivirales/química , Benzofuranos/química , Bronquios/virología , Células Cultivadas , Chlorocebus aethiops , Factor 4A Eucariótico de Iniciación/antagonistas & inhibidores , Humanos , Ácidos Hidroxámicos/química , Mucosa Respiratoria/virología , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Células Vero , Carga Viral/efectos de los fármacos , Compartimentos de Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA